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In a magnetic field, plasma waves are partially transverse and can couple to electromagnetic waves.
This interaction is investigated, and the possibility of observing such mixed modes in doped semiconduc-
tors, via light scattering, is considered. For small wave vector, the mode coupling is strong, giving rise to
a mixed excitation which we term a plasma-polariton. Unfortunately, the scattering strength for this entity

is small and it will be difficult to observe.

I. INTRODUCTION

HE scattering of light from plasmas in semi-
conductors has been intensively studied during
the past few years. This problem was first attacked
theoretically in the papers of Platzman' and Mc-
Whorter.? Subsequently, Mooradian and Wright? used
light scattering to directly observe the coupled plasma-
phonon system in #-type samples of GaAs. Their
experiment was the first of several in this area. Plasmon
light scattering has since been observed in a consider-
able variety of semiconductors.* It has been used to
study the dispersion and Landau damping® of these
waves, and detailed measurements of intensity and
polarization® have been correlated with theory.

More recently, the question of light scattering from
magnetoplasma waves has begun to be investigated.
Platzman, Tzoar, and Wolff” have pointed out that in a
magnetoplasma, light scattering can be used to study
the coupling between the hybrid mode and Bernstein®
modes of the electron gas. These coupling effects have
since been demonstrated experimentally by Patel and
Slusher.® Their work is the first direct verification of the
existence of Bernstein modes in solid-state plasmas. It
is important to realize that the coupling which makes
possible the observation of the Bernstein modes is a
finite wave-vector effect. The modes are uncoupled
when their wavelength is large.

In this paper we wish to consider the problem of light
scattering from magnetoplasma in the opposite limit,
namely that of very small wave vector. In this limit
there is no coupling to the Bernstein modes, but the
plasma waves can interact with electromagnetic modes,
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in a manner very similar to that in which the phonon
couples to the electromagnetic field to generate a
polariton.’® We will call the excitation which results
from the interaction of the electromagnetic and plasma
waves a “plasma-polariton.” The study of the dispersion
relation and scattering strengths for this entity is the
main purpose of this paper.

To this end, we wish to develop a general formula
describing the scattering of light from magnetoplasma
waves, particularly waves whose velocities are suffi-
ciently large that they can interact with electromagnetic
waves. The derivation, though it parallels one given by
McWhorter,? will be presented in detail because our
approach differs somewhat from his. In the case of a
single component magnetoplasma, the result can be
considerably simplified compared to his. The formula
also simplifies in the limit where the plasma waves
travel slowly compared to the velocity of light. Here we
will make contact with the work of Platzman, Tzoar,
and Wolff,” who used the low phase velocity limit of the
scattering formula. This limit is often called the quasi-
static limit.

In Sec. II1, we will use the light scattering formula to
discuss the plasma-polariton dispersion relations, and
will obtain expressions for the scattering strengths of
these modes. The results indicate that, for small g, there
is strong coupling between the magnetoplasma and
electromagnetic waves. One example is worked out in
detail. Plasma-polaritons will not be easy to study,
however. The coupling which gives rise to the mixed
modes is only strong for small wave vectors, which
means the scattering experiment must be done near the
forward direction. Unfortunately, forward scattering
from plasmas waves is very weak. This fact will make
the observation of this mode quite difficult.

Finally, in the last section of the paper, we discuss the
oscillator strengths for hybrid modes which propagate
at 45° to a magnetic field in the magnetoplasma. These
modes have recently been observed in GaAs by Patel
and Slusher.®
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II. LIGHT-SCATTERING FORMULA

In studying the light-scattering problem, we will
consider a single-component magnetoplasma whose
motion is described by the Hamiltonian
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It is well known that the spectrum of radiation scattered
from such a plasma is determined by the Fourier trans-
form of the electron density-density correlation function
in the medium. Specifically, the spectrum is given by
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in which p is the time-dependent electron-density
operator, q is the wave vector transferred to the plasma
in the scattering, and w is the frequency transfer. It is
important to realize that the spectrum is a function only
of the wave vector and frequency transfers. In the
solid-state case, Eq. (2), and the Hamiltonian which
precedes it, are valid when the frequencies (wo and wy)
of incident and scattered light waves are low compared
to the energy band gaps. However, the same formula is
approximately correct at finite frequencies if one re-
places the Thomson cross section (e2/m*c*)? by an
enhanced Thomson cross section!':
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In the following, our principal problem will be the
calculation of the density-density correlation function
which is central to Eq. (2). It is usually most convenient
to determine the closely related response function G. In
thermal equilibrium G is related to the correlation
function through the fluctuation dissipation theorem :2
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G is easier to calculate than J. In addition, it has a
simple and helpful physical interpretation. G deter-
mines the electron density that is induced in a plasma
by an external electrostatic potential of wave vector q
and frequency w. This relation is shown in Eq. (5):

Pind (q;w) = 27{'6G(pex(, (qyw) . (S)

Equations (4) and (5) are exact, but approximations
will be necessary to calculate G. Here our primary tool
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will be the random phase approximation. In its simplest
form, this approximation states that the plasma re-
sponds as a noninteracting electron gas to the fotal
potential that is present. The key word here is ““total.”
In Eq. (5), the potential which drives the plasma is an
external one, @ext. @ext induces a charge density in the
electron gas which, in turn, via Poisson’s equation,
produces an induced potential. The combination,
Ptotal= @ext+ @ing, 15 the total potential to which the
plasma responds. This, at least, is the case in a plasma
in which electromagnetic effects are unimportant. In
the circumstances we will be considering, the situation
is complicated by the fact that induced currents in the
plasma generate a vector potential, in addition to the
electrostatic potential mentioned above. Botk of these
potentials must be determined self-consistently from
the induced charge and current in the plasma, and from
Maxwell’s equations. It is this problem to which we now
turn our attention.

In Eq. (6) we write the total electric field in the
plasma as the sum of three terms: the gradient of an
external electrostatic potential, the gradient of an
induced electrostatic potential, and the time derivative
of an induced vector potential:
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The two induced potentials are determined by the
induced charge density and the transverse part of the
induced current, via Maxwell’s equations:
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The induced current in the plasma is related to the
total electric field by the plasma conductivity tensor
o(q,0);

jind (w) =0 Etotal . (8)

In calculating o, which determines the response of the
plasma to the fotal electric field, we will treat the
medium as a noninteracting gas. This is the basic
approximation of the random phase approximation. We
may now use the continuity equation to relate the
induced charge density to the divergence of the induced
current. It is then possible to combine the two Maxwell
equations in the form
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With the aid of Eqgs. (8) and (9), the induced electric
field and induced charge density in the plasma may now
be related to the external field. For the induced field we
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An expression for the induced charge may be obtained
by combining Egs. (8) and (10) and the continuity
equation. This is the quantity we really need, since it
determines the Green’s function via Eq. (5). The final
result for G is

G= ;71:6_2.{gﬁ)(q.q.n—l.c.q)~<iq:’q>} A

where the tensor D is defined by D=¢®—qq—w?/c?
+4rwe/ict. Equation (11) can be considerably simpli-
fied since o is directly related to D. After a little algebra,
one finds that G is given by the expression
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Lastly, we may take the imaginary part of G to calcu-
late the spectrum of the scattered radiation:
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This formula is our basic result which will be used
throughout the rest of the paper to discuss various sorts
of scattering experiments. It is only valid for the case of
a single component plasma. A more complicated cor-

relation function is required? to describe light scattering
from multicomponent plasmas.

(13)

III. PLASMA-POLARITON SCATTERING

In Sec. IT we have derived a general formula, Eq.
(13), which describes the scattering of light from a single
component plasma. We now wish to study the predic-
tions of this equation in a number of cases. A case of
particular interest is that in which electromagnetic
waves and plasma waves are coupled via dc magnetic
field applied to the plasma. This coupled excitation is
what we earlier termed a plasma-polariton.

However, before considering the plasma-polariton
scattering, it is worthwhile to see what our formula
predicts in the simple case of zero magnetic field. Under
these circumstances the dielectric tensor appearingin
Eq. (13) is diagonal, and so is D. The vector product
simplifies greatly, as shown below:

q-D-q=—(¢%*/u?)(1/6),
€ (q:w) = [1 —4ro (q:w)/iw]

is the plasma dielectric function. The differential cross

(14)

where
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section is
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This expression is the well-known formula for the light-
scattering cross section of an unmagnetized, single-
component plasma. Its predictions have been discussed
in detail in various places in the literature.

Now we consider Eq. (13) in the case when a dc
magnetic field is present. The dielectric tensor is no
longer diagonal, so we must face the problem of invert-
ing the tensor D. For this purpose it is convenient to
write the wave vector q as the product of an effective
index of refraction # and a unit vector « as shown below:

q= (nw/c)a. (16)

With these definitions D can be written in the form

D=(‘-°C—:>[n2<1—aa)—sjz(%:>l«‘.

The inverse of D is proportional to the inverse of F
which, in turn, is given by the well-known formula for
the inverse of a matrix:

(15)
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A straightforward expansion shows that sixth-order
terms in # drop out of the expression for the deter-
minant of F and it reduces to the form given below:

detF=An*+ Bn*+C,
with
A=a-ea,
B=(a-e-e-0)—(aeaTr(e),
C=det(e).

(19)

The algebraic manipulations which lead to these
formulas for the coefficients 4, B, and C are straight-
forward, though tedious in the case of B. Equation (19)
has zeros which determine the collective modes of the
coupled plasma and electromagnetic field.

With the aid of Eq. (17) it is now possible to write out
a detailed expression for the inverse of the tensor F. We
will not display this result in its most general form since
we have no use for it. However, it is of some interest to
consider the contributions of the highest order terms in
n (assuming #>>1) to the cofactor. A simple calculation

shows that they have the form shown below:
cof (F)~n*(a;-a;). (20)

Thus, in the limit where # is very large compared to
unity, the tensor product (Eq. 13) takes the simple

form
(q-D1q)= (¢¥/?)[1/ (e 2 @) ]. (21)
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This is the formula that was used in the analysis of
Platzman, Tzoar, and Wolff.” It is valid for large #;
that is, when the mode under consideration is traveling
slowly compared to the velocity of light. Modes of this
sort are normally excited in large angle light scattering
experiments. It is only for near forward scattering that
the condition #>>1 is violated, and one must consider
the detailed coupling of the magnetoplasma wave to the
electromagnetic wave. This is the question to which we
now turn our attention.

To study the mode coupling which gives rise to the
plasma-polariton, we choose a particularly simple
geometry—that in which the wave vector q is perpen-
dicular to the dc magnetic field. We will also assume
that q is sufficiently small that local expressions for the
dielectric tensor may be used in calculating F. Under
these conditions F takes the following form:

— €L €x O
F= —€x nz—el 0 N (22)
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where €1, €, and ¢, are the well-known!® components of
the dielectric tensor of a magnetized plasma:
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Here w, and w, are the cyclotron and plasma frequen-
cies, respectively. For simplicity, we have assumed that
the collision frequency of the carriers is very. small.
Collisions could be included in a phenomenological way,
though the resulting formulas become quite cumber-
some. The tensor F may now be inverted to obtain an
expression for the differential cross section. First, how-
ever, we consider the frequencies of the coupled modes
that are determined by the equation (det) (F)=0. They
turn out to be's

w1’22 _— % (62q2+wc2+ pr2) 4+ %[(62q2"‘ wv2)2+ 4‘/)62('0 112]1/2 .
(24)
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In the limit of large ¢, w; and w, take the form

waig?,
w2~ (Wl w?) .

Here the electromagnetic and hybrid plasma waves are
essentially decoupled from one another. It is only for
small g, i.e., for forward scattering, that the frequencies
are strongly modified by interaction. Figure 1 shows
plots of the frequencies w; and w, as a function of g for
the particular case in which the cyclotron frequency is
equal to the plasma frequency. Similar curves can be

(25)

13 W, P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Aniso-
tropic Plasmas (MIT Press, Cambridge, Mass., 1963).
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F16. 1. The plasma-polariton dispersion
relation for the case w,=wp.

calculated from Eq. (24) for other relative values of w,
and w,.

From Eq. (23) we may now determine the residues at
the two poles, w; and we. They are given by the ex-
pressions

wp2 (C2q2—|—wp2—w1,22)
2= .
' 2w1,2(w12—w22)

(26)

Finally, the differential cross section (per particle) can
be written in the form
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Plots of the residues R; and R, versus ¢ for the case
w.=w, are shown in Fig. 2. It is interesting that in the
limit of small ¢ both modes have an appreciable oscil-
lator strength. As ¢ increases the oscillator strength of
the electromagnetic-type mode decreases quite rapidly.
The strength of the magnetoplasma mode, on the other
hand, increases and finally levels out for large ¢ at the
value predicted from the quasistatic formula [Eq.
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F16. 2. Oscillator strengths of the plasma-
polariton in the case we=wz.
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T16. 3. Hybrid oscillator strengths for propagation
at 45° to the magnetic field.

(21)]. It is important to notice that Eq. (28) contains
a factor ¢% As we have emphasized, coupling of electro-
magnetic and plasma waves only occurs at small g, when
the plasma wave is traveling at a velocity comparable
to the velocity of light. On the other hand, when ¢ is
small, this screening factor greatly reduces the cross
section. As an example, we may consider the case of
n-type GaAs doped to 10% carriers/cc. The condition
x=1 (see Fig. 1) is achieved at a scattering angle of
about 5° in such a crystal. This screening factor reduces
the cross-section by about a factor of 100, compared to
large-angle plasmon scattering.? Thus, will it be very
difficult to observe the plasma-polariton.

IV. HYBRID PLASMA MODES

In several of the experiments in which light scattering
from plasma waves has been observed, light was propa-
gated at an angle to the dc magnetic field—in particular,
at 45° to it. This is not an ideal geometry, but does have
the interesting feature that even in the limit of fairly
large g there are two types of hybrid plasma modes
which might be observed. Their frequencies can easily
be calculated by setting Eq. (19) equal to zero, and
using the formulas of Eq. (24) to determine the com-
ponents of the dielectric tensor in the local limit. The
results are

oi=bortoE} o edn  (28)
These expressions have, of course, already® been given
in the literature. It is interesting, however, to calculate
the strength of the two modes in light scattering. This
is a matter of evaluating Eq. (21) in this particular
geometry. The strength functions normalized to those
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of the plasmon in the limit of zero magnetic field, are
given by the formulas
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R, and R_ are plotted versus magnetic field in Fig. 3.
We see here, as might have been guessed in advance,
that the oscillator strength shifts from one hybrid mode
to another as the magnetic field increases. The crossover
occurs at the field at which w, is about equal to w,. It is
also clear from this graph that the lower hybrid only
has appreciable oscillator strength for fields at which
w, is greater than w, This lower hybrid has recently
been observed by Patel and Slusher® in their light-
scattering experiments in #-type GaAs.

V. CONCLUSION

In this paper we have developed a general formula,
which describes the scattering of light from a single-
component plasma under circumstances in which the
modes of the plasma can couple to electromagnetic
waves. This result has been used to discuss the scatter-
ing of light from a mixed plasma-electromagnetic
excitation which we call a plasma-polariton. The
coupling is only strong when the plasma wave travels at
a velocity comparable to the electromagnetic wave,
i.e., when it has a small wave vector. Thus, one expects
to observe the plasma-polariton via forward light scat-
tering. Unfortunately, however, the whole scattering
cross section of light from a plasma tends to zero as ¢
goes to zero. This means that the plasma-polariton
scattering, via electron density fluctuations, will always
be exceedingly weak. In real solids, phonons are also
present. These may contribute to the strength of the
plasma-polariton and this contribution should eventu-
ally be estimated. However, the recent experiments of
Patel and Slusher* suggest that, even with phonon
coupling, the plasma-polariton scattering is too weak
to observe.

Finally, in the last section of the paper, we have dis-
cussed the oscillator strengths for hybrid modes which
propagate at 45° to the magnetic field. Both modes have
been observed via light scattering. To see the lower
hybrid, it is necessary to go to magnetic fields which
make the cyclotron frequency comparable to a larger
than the plasma frequency. This has been done in
recent experiments by Patel and Slusher.

u C). K. N. Patel and R. E. Slusher, Phys. Rev. Letters 22, 282
(1969).



